

Safety Data Sheet

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY

Product Identifier	
Product name	Sodium hypochlorite 12.5
Chemical name	Not applicable
Synonyms	Product code:
Proper shipping name	HYPOCHLORITE SOLUTION
Chemical formula	Not applicable
Other means of identification	Not available
CAS number	Not applicable

Relevant identified uses of the substance or mixture and uses advised against	
Relevant identified uses	Clean sanitise, de-stainer and deodoriser.

Details of the manufacturer or importer		
Registered company name	Registered company name ECOCLEAN UTILITY AGENCIES PTY LTD	
Address	26 Notar Drive, Ormeau, Queensland, Australia, 4207	
Telephone	(07) 5549 3666	
Website	www.ecocleanavantichem.com.au.com.au	
Emergency phone number	Poisons Information Centre: Phone 13 11 26	

Emergency telephone number	
Association/Organisation	Not Available
Emergency Telephone number	Telephone 000, for fire brigade, ambulance and police in Australia.
Other emergency telephone	Poisons Information Centre 13 26 11
numbers	

Safety Data Sheet

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture	
Poisons Schedule	S5 - CAUTION
ADG Code	CORROSIVE 8
GHS Classification [1]	Skin Corrosion - Sub-category 1C
	Eye Damage - Category 1
	Acute Aquatic Toxicity - Category 1

Label elements	
GHS label pictograms	
SIGNAL WORD	DANGER

Hazard statement(s)	
H314	Causes sever skin burns and eye damage.
H400	Very toxic to aquatic life.
AUH031	Contact with acids liberates toxic gas.

Precautionary statement(s): General		
P101 If medical advice is needed, have product container or label at hand.		
P102	Keep out of reach of children.	
P103	Read label before use.	

Precautionary statement(s): Prevention		
P260 Do not breath fume/ gas / mist / vapours / spray.		
P264	Wash thoroughly after handling.	
P273 Avoid release to the environment.		
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s): Response

Safety Data Sheet

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing.	
	Rinse skin with water/shower.	
P304+P340	If INHALED: Remove victim to fresh air and keep at rest in a position	
	comfortable for breathing.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact	
	lenses, if present and easy to do. Continue rinsing.	
P363	Wash contaminated clothing before use.	
P310	Immediately call a POSION CENTRE or doctor/physician.	
P321	Specific treatment (see First Aid Measures on Safety Data Sheet)	
P391	Collect spillage.	

Precautionary statement(s): Storage

P405 Store locked up.

Precautionary statement(s): Disposal

P501 Dispose of contents/ container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

CAS No	%[weight]	Name
7681-52-9	10-30%	Sodium hypochlorite
1310-73-2	<1%	Sodium hydroxide
7732-18-5	>60%	WATER

SECTION 4 FIRST AID MEASURES

Description of first aid mea	sures
Eye Contact	If in eyes, hold eyelids apart and flush the eye continuously with running water.
	Continue flushing until advised to stop by Poisons Information Centre or a doctor, or
	for at least 15 minutes. Seek immediate medical assistance.
Skin Contact	If skin or hair contact occurs, remove, remove contaminated clothing and flush skin
	and hair with running water. Wash clothing before reuse. Decontaminate clothing,
	shoes and leather goods before re-use, or discard. Seek medical attention.
Inhalation	Remove from exposure, rest and keep warm. If breath has stopped, apply artificial
	respiration. If breathing is difficult, give oxygen. Seek medical advice.
Ingestion	Rinse mouth thoroughly with water immediately. Give plenty of water to drink. Never

Safety Data Sheet

give anything by mouth to an unconscious person. If swallowed, do NOT induce vomiting. Risk of aspiration. If vomiting occurs, have victim lean forward and keep head below hips to reduce risk of aspiration. Rinse mouth and repeat administration of water. Seek immediate medical assistance.

Indication of any immediate medical attention and special treatment needed

Advice to Doctor

Treat symptomatically and suportively. Can cause corneal burns. Delayed pulmonary oedema may result. Consider oral administration of sodium thiosulfate solutions if sodium hypochlorite is ingested. Do not administer neutralizing substances (e.g., acid antidotes) since the resultant exothermic reaction could further damage tissue. Sodium thiosulphate immediately reduces hypochlorite to non toxic products but may product hydrogen sulphide in contact with acids. Endotracheal intubation could not be needed if glottic oedema comprosmises the airway. Fpr individuals with significant inhalation exposure monitor areterial blood gases and chest x-ray. Symptoms of plumonary oedema can be delayed up to 48 hours after exposure.

SECTION 5 FIREFIGHTING MEASURES

Suitable extinguishing equipment / media

Extinguish media

Not combustible, however if material is involved in a fire use: Fine water spray, normal foam, dry agent (carbon dioxide, dry chemical powder).

Special protective equipme	ent and precautions for fire fighters	
Fire Fighting	Hazchem code 2X.	
	Prevent, by any means available, spillage form entering drains or	
	watercourse.	
	Consider evacuation (or protect in place).	
	Fight Fire from a safe distance, with adequate cover.	
	Wear SCBA and chemical splash suite. Fully-encapsulating, gas tight	
	suits should be worn for maximum protection. Structural fire fighter's	
	uniform is NOT effective for these materials.	
Fire/Explosion Hazard	Material does not burn.	
	Fire or heat will produce irritating, poisonous and/or corrosive	
	gasses.	

Safety Data Sheet

- May ignite combustible (wood, paper, clothing etc).
- Contact with metals may evolve flammable hydrogen gas.
- Container may explode when heated.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective	e equipment and emergency procedures
Minor Spills	 Slippery when spilt. Avoid accidents, clean up immediately. Wear protective equipment to prevent skin and eye contact and
	breathing in vapours.Wipe up spill and rinse with water.
Major Spills	 Slippery when spilt. Avoid accidents, clean up immediately. Wear protective equipment to prevent skin and eye contact and breathing in vapours. Work up wind or increase ventilation. Contain - prevent run off into drains and waterways. Use absorbent (soil, sand or other inert material). Collect and seal in properly labelled containers or drums for disposal. Personal Protective Equipment advice is contained in Section 8 of the SDS

Environmental precautions	
	 Use appropriate containment to avoid environmental contamination. Prevent from spreading and entering waterway using sand, earth or other appropriate barriers. Attempt to disperse the vapour or to direct its flow to a safe location for example by using fog sprays. Ventilate contaminated area thoroughly. Clear area of all unprotected personnel. If contamination of sewers or waterways has occurred advise local emergency services.

Methods and materials for containment and cleaning up

Safety Data Sheet

•	Avoid con	tact with	spilled or	· released	material.

- Isolate hazard area and deny entry to unnecessary or unprotected personnel.
- Remove all sources of ignition in the surrounding area.
- Personal protective equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling		
Safe handling	This material is a Scheduled Poison S5 and must be stored, maintained and	
	used in accordance with the relevant regulations.	
	Avoid skin and eye contact and breathing in vapour, mists and aerosols.	
	Keep out of reach of children.	
	Wear prescribed protective clothing.	
	Use in well ventilated area.	
	Do NOT eat, drink or smoke when handling.	
	Wash hands after use.	
	Keep containers closed tightly when not in use.	
	Store in accordance to manufacturers instructions.	
Other information	Store in a cool place out of direct sunlight.	
	Store away form foodstuffs.	
	Store away from incompatible materials described in Section 10.	

Conditions for safe storage, including any incompatibilities		
Suitable container	Store in original container supplied by manufacturer.	
	Keep closed when not in use.	
Storage incompatibility	Store in cool place and out of direct sunlight.	
	Store away from foodstuffs.	
	Store away from acids.	
	Store away from incompatible materials described in Section 10.	
	Keep containers closed when not in use - check regularly for leaks.	

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Safety Data Sheet

Control parameters

Occupational Exposure Limits (OEL)

See Ingredients Data and Emergency Limits below.

INGREDIENT DATA

IITOREDIEITI						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australian	SODIUM	Chlorine	Not	Not	3 mg/m3 (1	Not
Exposure	HYPOCHLORITE		available	available	ppm)	available
Standards						
Australian	SODIUM	SODIUM	Not	Not	2 mg/m3	Not
Exposure	HYDROXIDE	HYDROXIDE	available	available		available
Standards						

EMERGENCY LIMITS

Ingredient	TEEL-0	TEEL-1	TEEL-2	TEEL-3
SODIUM	0.075 ppm	2 ppm	1.5 ppm	20 ppm
HYPOCHLORITE				

Ingredient	Original IDLH	Revised IDLH
SODIUM HYPOCHLORITE	30 ppm	10 ppm

Exposure controls Ensure ventilation is adequate and that air concentrations of components are Appropriate controlled below quoted Workplace ExposureStandards. engineering If inhalation risk exists: Use with local exhaust ventilation or while wearing air controls supplied mask. Keep containers closed when not in use Personal protection The selection of PPE is dependent on a detailed risk assessment. The risk assessment should consider the work situation, the physical form of the chemical, the handling methods, and environmental factors. Eye and face Use chemical safety goggles, face-shield recommended ANSI Z87.1 protection Skin protection Gloves and protective clothing (aprons, boots and bodysuits) made from rubber, vinyl, neoprene or PVC. Standard working clothing enclosed at the

Safety Data Sheet

<u> </u>	neck and v	vrist while wearing im	pervious equipment.	
Hand protection	Wear chemical protective gloves e.g. PVC			
Body protection	Standard v	vorking clothing encl	osed at the neck and wri	st while wearing
	impervious	impervious equipment.		
	When usin	When using large quantities or where heavy contamination is likely, wear: a		
	rubber or a	a PVC apron.		
Respiratory	If work practices o	lo not maintain airk	oorne level below the	exposure standard,
protection		. , , ,	n equipment. When u	9 .
			f mask and filter. Selec	9
	-		5°C). Respirators shou	
			a state/territory auth	•
		Degree of protection varies with both face-piece and Class of filter the nature of the protection varies with Type of filter.		
	Required			
	Minimum	Respirator	Respirator	Respirator
	Protection	-	-	-
	factor			
	Up to 10 x ES	B-AUS P3	-	B-PAPR-
			D 1116/61 1 D	AUS/Class 1 P3
	Up to 50 x ES	-	B-AUS/Class 1 P3	-
	Up to 100 x ES	-	B-2 P3	B-PAPR-2 P3
Other protection	• Overalls	-		
	PVC apron			
	PVC prote	PVC protective suite may be required for prolonged exposure		
	Ensure there is access to eye washes and safety showers.			
	Not Available			

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Safety Data Sheet

Appearance Transparent pale yellow alkaline liquid with distinctive hypochlorite odour.

Physical state	Liquid	Relative density (water=1)	1.17 to 1.22 @ 25°C
Odour	Characteristic, pungent,	Partition coefficient n-	Log P (oct) =-3.42
	chlorine-like (bleach)	octanol/water	estimated
	odour.		
Odour threshold	Not available	Auto-ignition temperature	Not applicable
		(°C)	
pH (as supplied)	Approximately 13	Decomposition	>35°C
	(Alkaline)	temperature	
Melting Point / Freezing	-25°C	Viscosity (cSt)	Not available
Point (°C)			
Initial boiling point and	96 – 120°C at 1013 hPa	Molecular weight (g/mol)	74.44
boiling range (°C)			
Flash point (°C)	Not applicable	Taste	Not available
Evaporation rate	Not available	Explosive properties	See below
Flammability	Not available	Oxidising properties	See below
Upper Explosive Limit (%)	Not applicable	Surface Tension (dyn/cm	Not available
		or mN/m)	
Lower Explosive Limit (%)	Not applicable	Volatile Component	80w/v
		(%vol)	
Vapour pressure (kPa)	17.5 mm Hg @ 20°C	Gas group	Not available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not available
Vapour density (Air=1)	Not available	VOC g/L	Not avialable

Explosion properties

Slightly explosive in present of heat. Explosive decomposition may occur under fire conditions and closed containers may rupture violently due to rapid decomposition, if exposed to fire or excessive heat for a sufficient period of time. The anhydrous solid obtained by desiccation of the sodium, hypochlorite pentahydrate will decompose violently on heating or friction. May react to form normal chloramines, which are explosive. Interaction with ethylenamine gives the explosive N-chloro compound. Removal of formic acid form industrial waste streams with sodium hypochlorite solution becomes explosive at 55°C. Several explosions involving methanol and sodium hypochlorite were attributed to formation of methyl hypochlorite, especially in presence of acid or other esterification catalyst. Use of sodium hypochlorite was attributed to formation of methyl hypochlorite, especially in presence of acid or other esterication catalyst. Use of sodium hypochlorite

Safety Data Sheet

	solution to destroy acidified benzyl cyanide residues caused a violent explosion,		
	thought to have been due to formation of nitrogen trichloride. Containers may		
	rupture form pressure build-up		
Oxidising properties	Sodium hypochlorite solutions give off oxygen when heated or when exposed to		
	sunlight. However, the amount is small and will not cause or contribute to		
	combustion. The solutions are, therefore, not considered to be oxidising agents.		

SECTION 10 STABILITY AND REACTIVITY

from air at normal temperatures releasing low concentrations of corrosive chlorine gas. Decomposion is influenced by temperature, concentration, pH, ionic strength, exposure to light and presence of metals such as copper, nickel or cobalt, metal oxides, e.g. rust and other impurities, such as acids and amines. Chemical stability Stable under normal ambient and anticipated storage and handling conditions of temperature and pressure. The amount of available chlorine diminishes over time. Possibility of hazardous reactions Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is pr				
gas. Decomposion is influenced by temperature, concentration, pH, ionic strength, exposure to light and presence of metals such as copper, nickel or cobalt, metal oxides, e.g. rust and other impurities, such as acids and amines. Chemical stability Stable under normal ambient and anticipated storage and handling conditions of temperature and pressure. The amount of available chlorine diminishes over time. Possibility of hazardous Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	Reactivity	Sodium hypochlorite solutions decompose slowly on contact with carbon dioxide		
exposure to light and presence of metals such as copper, nickel or cobalt, metal oxides, e.g. rust and other impurities, such as acids and amines. Chemical stability Stable under normal ambient and anticipated storage and handling conditions of temperature and pressure. The amount of available chlorine diminishes over time. Possibility of hazardous reactions Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		from air at normal temperatures releasing low concentrations of corrosive chlorine		
Chemical stability Stable under normal ambient and anticipated storage and handling conditions of temperature and pressure. The amount of available chlorine diminishes over time. Possibility of hazardous reactions Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		gas. Decomposion is influenced by temperature, concentration, pH, ionic strength,		
Chemical stability Stable under normal ambient and anticipated storage and handling conditions of temperature and pressure. The amount of available chlorine diminishes over time. Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethaned io (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		exposure to light and presence of metals such as copper, nickel or cobalt, metal		
Possibility of hazardous Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		oxides, e.g. rust and other impurities, such as acids and amines.		
Possibility of hazardous reactions Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	Chemical stability	Stable under normal ambient and anticipated storage and handling conditions of		
forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		temperature and pressure. The amount of available chlorine diminishes over time.		
salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	Possibility of hazardous	Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline)		
phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	reactions	forms explosively unstable N-mono- or di- chloramines. Reaction with ammonium		
with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas. Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or		
Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact		
violent. Reactions with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		with acids, especially hydrochloric acid, releases toxic and corrosive chlorine gas.		
chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		Reactions with reducing agents (e.g. hydrides, such as lithium aluminum hydride) are		
hypochlorite, especially in the presences of acids or other estification catalysts. Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals				
Reactions with formic acid become explosive at 55°C. Drop wise addition of the furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		chloroethyleneimine. Reactions with methanol can form explosive methyl		
furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		hypochlorite, especially in the presences of acids or other estification catalysts.		
violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		Reactions with formic acid become explosive at 55°C. Drop wise addition of the		
after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		furfuraldehyde to a 10% excess sodium hypochlorite solution at 20-25°C can lead to		
ethylenediaminetetracetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent		
mixing leads to vigorous foaming decomposition will not occur. Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		·		
Conditions to avoid Exposure to light, air or heat, acid conditions, the presence of combustible materials, metals and other impurities and incompatible materials. Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals				
metals and other impurities and incompatible materials. Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals				
Incompatible materials Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	Conditions to avoid	Exposure to light, air or heat, acid conditions, the presence of combustible materials,		
(e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals		metals and other impurities and incompatible materials.		
phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals	Incompatible materials	Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts		
		(e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or		
(especially copper, nickel and cobalt); reducing agents (e.g. hydrides such as lithium				
		(especially copper, nickel and cobalt); reducing agents (e.g. hydrides such as lithium		

Safety Data Sheet

	aluminum hydride); ethyleneimine (aziridine); methanol; especially in the presence of		
	acids or other etherifcation catalysts; formic acid (at 55°C); furfuraldehyde,		
	ethanoediol (ethylene glycol); sodium ethylenediaminetetracetate (EDTA) solution		
	and sodium hydroxide solution and mixing.		
Hazardous decomposition	Dangerous, corrosive, irritating, toxic and/or hazardous combustion fumes, vapours,		
products	or gases including chlorine gas (above 35°C), or when mixed with chemicals (e.g.		
	ammonia, acids, detergents, etc) or organic matter (e.g. urine, faeces etc.), hydrogen		
	chloride gas, hydrochloric acid, sodium chlorate, oxygen gas (when exposed to		
	sunlight), chloramine gas (when mixed with ammonia), flammable hydrogen gas		
	(upon contact with metals) and sodium oxide (Na $_2$ O) at high temperatures.		

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological	effects	
Inhaled	Corrosive - toxic. Over exposure may result in mucous membrane irritation of the	
	respiratory tract, coughing and possible burns. High level exposure may result in	
	ulceration of the respiratory tract, breathing difficulties, chemical pneumonitis and	
	pulmonary oedema.	
Ingestion	Corrosive - toxic. Ingestion may result in burns to the mouth and throat, nausea,	
	vomiting, ulceration of the gastrointestinal tract, breathing difficulties, circulatory	
	collapse and coma.	
Skin Contact	Corrosive. Contact may result in irritation, redness, pain, rash, dermatitis and	
	possible burns. Prolonged or repeated contact may result in ulceration.	
Eye	Highly corrosive. Contact may result in irritation, lacrimation, pain, redness,	
	conjunctivitis and corneal burns with possible permanent damage.	
Chronic	Repeated or prolonged exposure to corrosives may result in the erosion of teeth,	
	inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw.	
	Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may	
	ensure. Gastrointestinal disturbances may also occur. Chronic exposures may result	
	in dermatitis and or conjunctivitis. There exists limited evidence that shows that skin	
	contact with the material is capable of inducing a sensitization reaction in a	
	significant number of individuals, and/or of producing positive response in	
	experimental animals. Reduced respiratory capacity may result from chronic low	
	level exposure to chlorine gas. Chronic poisoning may result in coughing, severe	
	chest pains, sore throat and haemoptysis. Moderate to sever exposure over 3 years	
	products decreased lung capacity in a number of workers. Delayed effects can	
	include shortness of breath, violent headaches, pulmonary oedema and pneumonia.	

Safety Data Sheet

Amongst chlor-alkali workers exposed to mean concentrations of 0,15 ppm for an
average of 10.9 years generalized pattern of fatigue (exposures of 0.5 ppm and
above) and a modest increased incidence of anxiety and dizziness were recorded.
Leukocytosis and lower haematocrit showed some relation to exposure.

XO2 SODIUM	TOXICITY	IRRITATION
HYPOCHLORITE	Not available	Not available

Individual constituents			
SODIUM HYPOCHLORITE	TOXICITY	IRRITATION	
	Oral (mouse) LD50: 5800mg/kg	Eye (rabbit) 10mg - moderate	1
	Oral (rat) LD50: 8920mg/kg	Eye (rabbit) 100mg – moderate	
		Skin (rabbit) 500mg/24hr - moderate	l

Acute Toxicity	NO	Carcinogenicity	NO
Skin Irritation/Corrosion	YES	Reproductivity	NO
Serious Eye	YES	STOT – Single Exposure	NO
Damage/Irritation			
Respiratory or Skin	NO	STOT – Repeated	NO
sensitivity		Exposure	
Mutagencity	NO	Aspiration Hazard	NO

SECTION 12 ECOLOGY INFORMATION

Toxicity:		
Sodium hypochlorite	Toxic to aquatic organisms. Prevent spills from entering drains or watercourses.	
	48hr LC50 (fish): 0.07 - 5.9 mg/L.	

Persistence and degradability		
Ingredient	Persistence: Water/Soil	Persistence: Air
Sodium hypochlorite	This material is biodegradable.	Not available

Bio-accumulative potential	
Ingredient	Bioaccumulation
Not available	Not available

Safety Data Sheet

Mobility in Soil	
Ingredient	Mobility
Not available	Not available

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods		
Product/Packaging	Dispose of contents/container to chemical landfill. Consult local or regional waste	
disposal	management authority for further details.	

SECTION 14 TRANSPORT INFORMATION

Labels Required	
	CORROSIVE
Marine Pollutant	NO
HAZCHEM	2X

Land transport (ADG)		
UN number	1791	
Packing group	III	
UN proper shipping	HYPOCHLORITE SOLUTION	
name		
Environmental hazard	No relevant data	
class(es)		
Transport hazard	Class	8
class(es)	Subrisk	Non Allocated
Special precautions for	Special provisions	223
user	Limited quantity	5L

Air transport (ICAO-IATA / DGR) UN number 1791 Packing group III UN proper shipping HYPOCHLORITE SOLUTION name

Safety Data Sheet

Environmental hazard	No relevant data		
Transport hazard	ICAO/IATA Class	8	
class(es)	ICAO/IATA Subrisk		

Sea transport (IMDG-Code / GGVSee)		
UN number	1791	
Packing group	III	
UN proper shipping name	HYPOCHLORITE SOLUTION	
Environmental hazard class(es)	Not Available	
Transport hazard class(es)	IMDG Class	8
	IMDG Subrisk	
Special precautions for user	IMDG EMS Fire:	F-A
	IMDG EMS Spill	S-B

SECTION 15 REGULATORY INFORMATION

Health, safety and environment regulations		
Poisons Schedule	S5	

Section 16 - Other Information

Issue Date	20 th July 2015
Version Number	2.0
Abbreviations and acronyms	ADG Code: Australian Code for the Transport of Dangerous Goods by Road and Rail.
	AICS: Australian Inventory of Chemical Substances.
	CAS Number: Chemical Abstracts Service Registry Number.
	GHS: Globally Harmonized System of Classification and Labelling of Chemicals
	HAZCHEM: An emergency action code of numbers and letters which gives information to emergency services.
	HSIS: Hazardous Substances Information System
	IARC: International Agency for Research on Cancer.
	NOHSC: National Occupational Health and Safety Commission.
	NTP: National Toxicology Program (USA).

Safety Data Sheet

Safety Data Sheet		
	SDS: Safety Data Sheet STEL: Short Term Exposure Limit. SUSDP: Standard for the Uniform Scheduling of Drugs and Poisons. TWA: Time Weighted Average. UN Number: United Nations Number.	
Literature references	Preparation of Safety Data Sheets for Hazardous Chemicals – Code of Practice (December 2011 – Safe Work Australia)	
	GHS Hazardous Chemical Information List (September 2014 – Safe Work Australia)	
	Guidance on the Classification of Hazardous Chemicals under the WHS Regulations. April 2012. Safe Work Australia.	
	Global Harmonized System of Classification and Labelling of Chemicals (GHS). Fifth revised edition.	
	"Australian Exposure Standards"	
	List of Designated Hazardous Substances [NOHSC:10005(1999)]	
	Australian Code For The Transport Of Dangerous Goods By Road And Rail – 7th Edition.	
	Standard for the Uniform Scheduling of Medicines and Poisons 2015.	
	Material Safety Data Sheets – individual raw materials – Suppliers.	
	Approved Criteria for Classifying Hazardous Substances [NOHSC:1008(1999)]	
	HSIS – Hazardous Substance Information System – National Worksafe Data Base.	
	LABELLING OF WORKPLACE HAZARDOUS CHEMICALS, Code of Practice, DEC 2011	
	IMPLEMENTATION OF THE GLOBALLY HARMONISED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS (GHS) APRIL 2012	
Risk assessments	This SDS is a tool to communicate hazards which can assist you in creating relevant risk assessments for your workplace. There are many variables in determining whether a particular hazard is a risk in your workplace. Keep in mind this may be influenced by such things as the amount used, frequency of use, engineering controls, effectiveness of safety training and many more considerations.	
Disclaimer	Safety Data Sheets are updated frequently. Please ensure that you have a current copy. This SDS summarises our best knowledge of the health and safety hazard information of the product and how to safely handle and use the product in the workplace. If clarification or further information is needed to ensure that an appropriate risk assessment can be made, the user should contact XO2 Pty Ltd. Our responsibility for products sold are subject to our standard terms and conditions. Where health or safety data given discloses a risk to the user or environment, it is the responsibility of the Purchaser to pass on that information to employees or those who may be using the product, ensuring that adequate safety procedures are used including good industrial hygiene.	

Safety Data Sheet

Copyright	This document is copyright.
	End of SDS

Document Revision History

Revision #	Date	Reason for Revision
.01		New format for GHS.
02	19.07.15	Review by WT